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J. Phys. A: Math. Gen. 15 (1982) 1431-1435. Printed in Great Britain 

COMMENT 

Some general properties of master equations 

H It0 
Kakioka Magnetic Observatory, Yasato, Niihari, Ibaraki 315-01, Japan 

Received 29 September 1981 

Abstract. Haken’s three assertions on master equations, normalisation of transition 
probability, existence and uniqueness of a stationary distribution, and approach to the 
stationary distribution, are not always true when the system has infinitely many states. In 
particular, the stochastic Lotka-Volterra model does not necessarily conclude the approach 
to a state in which both preys and predators are extinct. 

Recently Haken (1978) discussed some aspects of the stochastic Lotka-Volterra model 

&P(t, ( x ,  y))=A(x-l)P(t, ( ~ - 1 ,  Y ) ) - A X P ( ~  ( x ,  Y)) 

+ ( x  + l ) (y  - l)P(t, (x + 1, Y - 1)) - x y P ( t ,  ( x ,  Y N  

+B(Y + 1)P(t, ( x ,  Y + 1)) 

-ByP(t, ( x ,  Y))  x ,  y = 0, 1, . . . A,B>O (1) 
based on general properties of master equations. 

He asserted that a solution P(t, x )  of a master equation on a state space S 

a m ,  x )  = c w ( z ,  x ) P ( t ,  2)- c 4 x 9  z>P(t, x )  x ,  z E S  (2) 
Z + X  Z f X  

( w ( x ,  y )  represents probability per unit time to jump from x to y,  which is written as 
w ( y ,  x )  in Haken’s notation) satisfies the following. 

(i) If O < P ( O , x ) s  1, V ~ E S ,  and Z,,sP(O, x ) =  1, then 

0 s P( t, x ) s 1 V X E S  (3) 

P(t, x )  = 1 for any t > 0. 
x s s  

(4) 

(ii) There exists at least one stationary solution P s t ( x )  such that &Pst(x)  = 0 and 

(iii) If the stationary solution is unique, then P(t, x)  --* P s t ( x )  as t + 00. 

(iv) Suppose any two points x,  y E S are connected by some sequence X I ,  x2,  . . . , x,, 

W(Xb xi -1)  > 0 or w ( x i - 1 ,  x i ) > O  (5) 

E x e s  Pst (x)  = 1. 

such that 

for i = 1,2, . . , , n + 1 ( x o  = x ,  x , + ~  = y). Then the stationary solution is unique. 
Haken concluded by using (iv) that (1) has only one stationary solution Pst(x ,  y )  = 

Sx,oSy,o, which had been proved by Reddy (1973) with a long calculation. On the basis of 
(iii) he claimed P(t, x,  y)  + Sx.oSy,o as t + CO. 
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Great care must be taken, however, when we apply (i)-(iv) to a process with an 
infinite state space S as is the case of the Lotka-Volterra model. We present in this note 
some examples violating (i)-(iv). Schnackenberg (1976) asserted (i)-(iv), imposing an 
additional condition 

which the Lotka-Volterra model fails to satisfy; but properties (i) and (ii) are not valid in 
general. 

Let us consider a master equation of birth-death type on a state space S = (0, 1, . . .}: 

aJ'(t, O)=-AoP(t, O)+l*.lP(t, 1) (7)  

aJ'(t, X ) = - ( A , + P , ) P ( ~ ,  x)+A,-iP(t, ~ - l ) + p , + l P ( t ,  x +I) x = 1 . 2 , .  1 .  

with an initial condition P(0, x )  = S,,,. 

having the properties (3) and (4) when 
We first show that the master equation (7) with xo=O does not have a solution 

A, = A "  P X  = P x  A > l , O < k G l .  \8) 

It is worth noting that this model fulfils condition (6). Suppose there exists a solution 
P(t, x )  of (7) satisfying (3) and (4). By virtue of (7), F(t ,  x):=Z:,, P(t, z )  satisfies 

Integration with respect to t yields 

1 -F(t ,  x )  = A ,  J P(s, x )  ds -p,+l P(s, x + 1) ds. 
0 Jn 

Assumption (3) assures 1 -F(t, x )  s 1, hence 

A, jot Pis, x )  ds - P , + ~  ' P ( s ,  x + 1) ds L 1. I, 
Using this inequality recursively, we have 

L-1 x + l  x+L-1  f 

[ = I  z = x + l  A, 
A,[ofP(s,x)dsS1+ 1 fl Lr+p,+r  z = x r l  fl E I, ~ ( s ,  x + L )  ds 

l = 1  
(9) 

Here we have used 1~ s 1, A > 1. By assumptions (3) and (4) limL,, P(t, x +L) = 0 and 
P(s,  x +L) 6 1, so that we have 

lim jof P(s, x + L) ds = 0 
L + X  

by the bounded convergence theorem. From (9) and (10) 

A x  jofP(s, x )  ds S 1 +(pL/h)*+'(l - ,u/A)- ' .  
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Summing this with respect to x, we obtain 
W OD IbF(., x)  ds G c A-"+A(l -p/A)-' (p/A2)'+l. 

x = o  x =o 

Noting F(s, x)Tl as x -* CO, and again invoking the bounded convergence theorem, we 
have 

t ~ ( l - l / A ) - 1 + p A - 1 ( l - p / A ) - 1 ( l - p / A 2 ) - 1  

which is a contradiction for sufficiently large t. 

with a property (3) and a substochastic property 
We can always construct a solution P of (7), sometimes called a minimal solution, 

for any t > 0. To define F, consider a backward equation of (7) in an integral form 

P(t, x, Y )  = exp[-(Ax +px)t l&,y 

Here we have explicitly written the starting point x,  i.e. P(0, x, y)  = &,,. The minimal 
solution P(t, x ,  y )  is defined as a limit of a sequence P,, approximating (12): 

p00, x ,  Y 1 = &,y exp[-(Ax + pX)fl 

pn(t ,x ,  y ) = p O ~ ,  x, r)+l'exp[-(A,+/Lr)(f-S)~ 0 

X[AxPn-i(S, x + l ,  y)+pXPfl-i(s,x-1, Y)I rial. (13) 

It is not difficult to show by induction that P, is an increasing function of n and satisfies 
(3) and (11); hence P = limn+- P,, exists and also has the properties (3) and (11). f '  is 
shown to be a solution of the forward equation (7) (Feller 1966). 

Secondly, we show that the master equation (7) with (8) does not have a stationary 
solution; if it does, say Pst, we have from (7) 

-AxPst(x) + px+lPst(x + 1) = 0 x =o, 1 ,2 , .  . . , 
Then Pst is given by 

Pst(x) = fi (Al--l/pl)Pst(0) x a l  
1 = 1  

which fails to fulfil the normalisation condition Z x , ~ P s , ( x )  = 1 since 
m k  

We must note that a stationary solution does not always exist even if (4) holds. As an 
example still satisfying (6) we consider 

A, = 1 p,+1= 1 x = o , 1 , 2  ,.... (15) 
This model clearly has no stationary solution since A defined by (14) is infinite. On the 
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other hand, its minimal solution P fulfils 

O s l -  2 P(t ,  1 )  
i=o 

s jor P(s, X) ds - 6' P(s, x + 1) ds 

Since P has the properties (3) and (1  l), limx+m 

Ps,(x) even if it exists uniquely. The simplest one may be 

P(s,  x )  ds = 0, which implies (4). 
Thirdly, we give an example that P ( f ,  x)  does not approach the stationary solution 

A o = O  I*1=1 hi = 1 p i + l =  0 i = 1 , 2 , .  . . (17) 

and P(0, x )  = 
equation (7) reads 

This model is a pure birth process having a trap at x = 0. The 

&P(t, 0) = P(t, 1) 

&P(t, 1) = -2P(t, 1) (18) 

&P(t, x )  = -P(t, x ) + P ( t ,  x - 1) x = 2 , 3 , .  . . 
and is solved as 

P(t, 0) = t ( 1  -e-2') 

P( t ,  1) = e-2r 

which shows that P(t, 0) tends to $ as t + CO. 

Let us give one more example with P(0, x)  = &.I and 

h , = 1 - ( 1 + ~ ) - ~  p x + 1 =  (2+X)r2 x = 0, 1, . . . 
which has the property (6) on (1,2,  . . .}. It can be shown that Z?=O P(t, x)  = 1, V t  > 0 in 
almost the same way as was done for (15). As is well known (Feller 1966) a sample 
starting from x stays there for time T~ with E[T,] = 1, and then hits x + 1 ( x  - 1) with 
probability 1 - ( 1 + ~ ) - ~  ( ( 1 + ~ ) - ~ ) .  Consider an event M for which a transition 
1 .+ 2 + 3 + . . . occurs. Then the fact X:=o P(t, x)  = 1 means E?='=, 7; = CO, and 

ffi 

P ( M ) =  n ( 1 - K 2 ) = 1  2 
n=2 

i.e. Prob (samples starting from (1) do not hit (0)) 3.f. 

The stochastic Lotka-Volterra model is another example violating (iii). As is clear 
from figure 1, every sample starting from (x, y ) ,  x 2 1 hits the set ( z ,  0) ( z  = 1,2,3,  . . .) 
with strictly positive probability, and after reaching it the sample never goes to (0 ,O) .  

As for the property (iv), it is not true even when S is a finite set. Such a case is given 
by: S = {1,2,3,4} ,  w ( l , 4 )  = w(3,2) = 1, w ( l , 2 )  = w(3,4) = 2 and all the other 
w(x, y )  = 0. This has infinitely many stationary solutions P d 2 )  = a, Ps,(4) = 1 -a, 
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Figare 1. Digraph for the stochastic Lotka-Volterra model. An arrow is drawn from x to y 
if w(x,  y)>O.  

Pst( 1) = Ps,(3) = 0, a E [0, 11. The property (v) is found to be valid, which is obtained 
from (iv) by replacing ( 5 )  by 

I7 W ( X i  &+I) > 0. 
i = O  

Proof of (v) and sufficient conditions for (i)-(iii) are given by developing the 
Lyapunov method. All we have to do is to find a Lyapunov function of the backward 
operator of (2). This will be discussed later (It0 1981). 
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