Some general properties of master equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1982 J. Phys. A: Math. Gen. 151431
(http://iopscience.iop.org/0305-4470/15/4/040)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 15:55

Please note that terms and conditions apply.

COMMENT

Some general properties of master equations

H Ito
Kakioka Magnetic Observatory, Yasato, Niihari, Ibaraki 315-01, Japan

Received 29 September 1981

Abstract

Haken's three assertions on master equations, normalisation of transition probability, existence and uniqueness of a stationary distribution, and approach to the stationary distribution, are not always true when the system has infinitely many states. In particular, the stochastic Lotka-Volterra model does not necessarily conclude the approach to a state in which both preys and predators are extinct.

Recently Haken (1978) discussed some aspects of the stochastic Lotka-Volterra model

$$
\begin{align*}
\partial_{t} P(t,(x, y))= & A(x-1) P(t,(x-1, y))-A x P(t,(x, y)) \\
& +(x+1)(y-1) P(t,(x+1, y-1))-x y P(t,(x, y)) \\
& +B(y+1) P(t,(x, y+1)) \\
& -B y P(t,(x, y)) \quad x, y=0,1, \ldots \quad A, B>0 \tag{1}
\end{align*}
$$

based on general properties of master equations.
He asserted that a solution $P(t, x)$ of a master equation on a state space S

$$
\begin{equation*}
\partial_{t} P(t, x)=\sum_{z \neq x} w(z, x) P(t, z)-\sum_{z \neq x} w(x, z) P(t, x) \quad x, z \in S \tag{2}
\end{equation*}
$$

($w(x, y)$ represents probability per unit time to jump from x to y, which is written as $w(y, x)$ in Haken's notation) satisfies the following.
(i) If $0 \leqslant P(0, x) \leqslant 1, \forall x \in S$, and $\Sigma_{x \in S} P(0, x)=1$, then

$$
\begin{array}{ll}
0 \leqslant P(t, x) \leqslant 1 & \forall x \in S \\
\sum_{x \in S} P(t, x)=1 & \text { for any } t>0 \tag{4}
\end{array}
$$

(ii) There exists at least one stationary solution $P_{\mathrm{st}}(x)$ such that $\partial_{t} P_{\mathrm{st}}(x)=0$ and $\Sigma_{x \in S} P_{\mathrm{st}}(x)=1$.
(iii) If the stationary solution is unique, then $P(t, x) \rightarrow P_{\mathrm{st}}(x)$ as $t \rightarrow \infty$.
(iv) Suppose any two points $x, y \in S$ are connected by some sequence $x_{1}, x_{2}, \ldots, x_{n}$ such that

$$
\begin{equation*}
w\left(x_{i}, x_{i-1}\right)>0 \quad \text { or } \quad w\left(x_{i-1}, x_{i}\right)>0 \tag{5}
\end{equation*}
$$

for $i=1,2, \ldots, n+1\left(x_{0}=x, x_{n+1}=y\right)$. Then the stationary solution is unique.
Haken concluded by using (iv) that (1) has only one stationary solution $P_{\mathrm{st}}(x, y)=$ $\delta_{x, 0} \delta_{y, 0}$, which had been proved by Reddy (1973) with a long calculation. On the basis of (iii) he claimed $P(t, x, y) \rightarrow \delta_{x, 0} \delta_{y, 0}$ as $t \rightarrow \infty$.

Great care must be taken, however, when we apply (i)-(iv) to a process with an infinite state space S as is the case of the Lotka-Volterra model. We present in this note some examples violating (i)-(iv). Schnackenberg (1976) asserted (i)-(iv), imposing an additional condition

$$
\begin{equation*}
w(x, y)>0 \Rightarrow w(y, x)>0 \tag{6}
\end{equation*}
$$

which the Lotka-Volterra model fails to satisfy; but properties (i) and (ii) are not valid in general.

Let us consider a master equation of birth-death type on a state space $S=\{0,1, \ldots\}$;

$$
\begin{equation*}
\partial_{t} P(t, 0)=-\lambda_{0} P(t, 0)+\mu_{1} P(t, 1) \tag{7}
\end{equation*}
$$

$\partial_{t} P(t, x)=-\left(\lambda_{x}+\mu_{x}\right) P(t, x)+\lambda_{x-1} P(t, x-1)+\mu_{x+1} P(t, x+1) \quad x=1,2, \ldots$
with an initial condition $P(0, x)=\delta_{x, x_{0}}$.
We first show that the master equation (7) with $x_{0}=0$ does not have a solution having the properties (3) and (4) when

$$
\begin{equation*}
\lambda_{x}=\lambda^{x} \quad \mu_{x}=\mu^{x} \quad \lambda>1,0<\mu \leqslant 1 . \tag{8}
\end{equation*}
$$

It is worth noting that this model fulfils condition (6). Suppose there exists a solution $P(t, x)$ of (7) satisfying (3) and (4). By virtue of (7), $F(t, x):=\sum_{z=0}^{x} P(t, z)$ satisfies

$$
\partial_{t} F(t, x)=-\lambda_{x} P(t, x)+\mu_{x+1} P(t, x+1) .
$$

Integration with respect to t yields

$$
1-F(t, x)=\lambda_{x} \int_{0}^{t} P(s, x) \mathrm{d} s-\mu_{x+1} \int_{0}^{t} P(s, x+1) \mathrm{d} s
$$

Assumption (3) assures $1-F(t, x) \leqslant 1$, hence

$$
\lambda_{x} \int_{0}^{t} P(s, x) \mathrm{d} s-\mu_{x+1} \int_{0}^{t} P(s, x+1) \mathrm{d} s \leqslant 1 .
$$

Using this inequality recursively, we have

$$
\begin{align*}
\lambda_{x} \int_{0}^{t} P(s, x) \mathrm{d} s & \leqslant 1+\sum_{l=1}^{L-1} \prod_{z=x+1}^{x+l} \frac{\mu_{z}}{\lambda_{z}}+\mu_{x+L} \prod_{z=x+1}^{x+L-1} \frac{\mu_{z}}{\lambda_{z}} \int_{0}^{t} P(s, x+L) \mathrm{d} s \\
& \leqslant 1+\sum_{l=1}^{\infty}(\mu / \lambda)^{x+i}+\int_{0}^{t} P(s, x+L) \mathrm{d} s . \tag{9}
\end{align*}
$$

Here we have used $\mu \leqslant 1, \lambda>1$. By assumptions (3) and (4) $\lim _{L \rightarrow \infty} P(t, x+L)=0$ and $P(s, x+L) \leqslant 1$, so that we have

$$
\begin{equation*}
\lim _{L \rightarrow \infty} \int_{0}^{t} P(s, x+L) \mathrm{d} s=0 \tag{10}
\end{equation*}
$$

by the bounded convergence theorem. From (9) and (10)

$$
\lambda_{x} \int_{0}^{t} P(s, x) \mathrm{d} s \leqslant 1+(\mu / \lambda)^{x+1}(1-\mu / \lambda)^{-1} .
$$

Summing this with respect to x, we obtain

$$
\int_{0}^{t} F(s, x) \mathrm{d} s \leqslant \sum_{x=0}^{\infty} \lambda^{-x}+\lambda(1-\mu / \lambda)^{-1} \sum_{x=0}^{\infty}\left(\mu / \lambda^{2}\right)^{x+1}
$$

Noting $F(s, x) \uparrow 1$ as $x \rightarrow \infty$, and again invoking the bounded convergence theorem, we have

$$
t \leqslant(1-1 / \lambda)^{-1}+\mu \lambda^{-1}(1-\mu / \lambda)^{-1}\left(1-\mu / \lambda^{2}\right)^{-1}
$$

which is a contradiction for sufficiently large t.
We can always construct a solution \bar{P} of (7), sometimes called a minimal solution, with a property (3) and a substochastic property

$$
\begin{equation*}
\sum_{x=0}^{\infty} \bar{P}(t, x) \leqslant 1 \tag{11}
\end{equation*}
$$

for any $t>0$. To define \bar{P}, consider a backward equation of (7) in an integral form

$$
\begin{align*}
P(t, x, y)= & \exp \left[-\left(\lambda_{x}+\mu_{x}\right) t\right] \delta_{x, y} \\
& +\int_{0}^{t} \exp \left[-\left(\lambda_{x}+\mu_{x}\right)(t-s)\right]\left[\lambda_{x} P(s, x+1, y)+\mu_{x} P(s, x-1, y)\right] \tag{12}
\end{align*}
$$

Here we have explicitly written the starting point x, i.e. $P(0, x, y)=\delta_{x, y}$. The minimal solution $\bar{P}(t, x, y)$ is defined as a limit of a sequence P_{n} approximating (12):

$$
\begin{align*}
& P_{0}(t, x, y)=\delta_{x, y} \exp \left[-\left(\lambda_{x}+\mu_{x}\right) t\right] \\
& P_{n}(t, x, y)=P_{0}(t, x, y)+\int_{0}^{t} \exp \left[-\left(\lambda_{x}+\mu_{x}\right)(t-s)\right] \\
& \times\left[\lambda_{x} P_{n-1}(s, x+1, y)+\mu_{x} P_{n-1}(s, x-1, y)\right] \quad n \geqslant 1 . \tag{13}
\end{align*}
$$

It is not difficult to show by induction that P_{n} is an increasing function of n and satisfies (3) and (11); hence $\bar{P}=\lim _{n \rightarrow \infty} P_{n}$ exists and also has the properties (3) and (11). \bar{P} is shown to be a solution of the forward equation (7) (Feller 1966).

Secondly, we show that the master equation (7) with (8) does not have a stationary solution; if it does, say P_{st}, we have from (7)

$$
-\lambda_{x} P_{\mathrm{st}}(x)+\mu_{x+1} P_{\mathrm{st}}(x+1)=0 \quad x=0,1,2, \ldots
$$

Then $P_{\text {st }}$ is given by

$$
P_{\mathrm{st}}(x)=\prod_{l=1}^{x}\left(\lambda_{l-1} / \mu_{l}\right) P_{\mathrm{st}}(0) \quad x \geqslant 1
$$

which fails to fulfil the normalisation condition $\Sigma_{x \in S} P_{s t}(x)=1$ since

$$
\begin{equation*}
A:=1+\sum_{k=1}^{\infty} \prod_{l=1}^{k}\left(\lambda_{l-1} / \mu_{l}\right)=\infty \tag{14}
\end{equation*}
$$

We must note that a stationary solution does not always exist even if (4) holds. As an example still satisfying (6) we consider

$$
\begin{equation*}
\lambda_{x}=1 \quad \mu_{x+1}=1 \quad x=0,1,2, \ldots \tag{15}
\end{equation*}
$$

This model clearly has no stationary solution since A defined by (14) is infinite. On the
other hand, its minimal solution \bar{P} fulfils

$$
\begin{align*}
0 & \leqslant 1-\sum_{l=0}^{x} \bar{P}(t, l) \\
& \leqslant \int_{0}^{t} \bar{P}(s, x) \mathrm{d} s-\int_{0}^{t} \bar{P}(s, x+1) \mathrm{d} s \\
& \leqslant \int_{0}^{t} \bar{P}(s, x) \mathrm{d} s \tag{16}
\end{align*}
$$

Since \bar{P} has the properties (3) and (11), $\lim _{x \rightarrow \infty} \int_{0}^{t} \bar{P}(s, x) \mathrm{d} s=0$, which implies (4).
Thirdly, we give an example that $P(t, x)$ does not approach the stationary solution $P_{\mathrm{st}}(x)$ even if it exists uniquely. The simplest one may be

$$
\begin{array}{lll}
\lambda_{0}=0 & \mu_{1}=1 & \lambda_{i}=1 \tag{17}
\end{array} \mu_{i+1}=0 \quad i=1,2, \ldots
$$

and $P(0, x)=\delta_{x, 1}$. This model is a pure birth process having a trap at $x=0$. The equation (7) reads

$$
\begin{align*}
& \partial_{t} P(t, 0)=P(t, 1) \\
& \partial_{t} P(t, 1)=-2 P(t, 1) \tag{18}\\
& \partial_{t} P(t, x)=-P(t, x)+P(t, x-1) \quad x=2,3, \ldots
\end{align*}
$$

and is solved as

$$
\begin{aligned}
& P(t, 0)=\frac{1}{2}\left(1-\mathrm{e}^{-2 t}\right) \\
& P(t, 1)=\mathrm{e}^{-2 t}
\end{aligned}
$$

which shows that $P(t, 0)$ tends to $\frac{1}{2}$ as $t \rightarrow \infty$.
Let us give one more example with $P(0, x)=\delta_{x, 1}$ and

$$
\lambda_{x}=1-(1+x)^{-2} \quad \mu_{x+1}=(2+x)^{-2} \quad x=0,1, \ldots
$$

which has the property (6) on $\{1,2, \ldots\}$. It can be shown that $\Sigma_{x=0}^{\infty} P(t, x)=1, \forall t>0$ in almost the same way as was done for (15). As is well known (Feller 1966) a sample starting from x stays there for time τ_{x} with $E\left[\tau_{x}\right]=1$, and then hits $x+1(x-1)$ with probability $1-(1+x)^{-2}\left((1+x)^{-2}\right)$. Consider an event M for which a transition $1 \rightarrow 2 \rightarrow 3 \rightarrow \ldots$ occurs. Then the fact $\Sigma_{x=0}^{\infty} P(t, x)=1$ means $\Sigma_{x=1}^{\infty} \tau_{x}=\infty$, and

$$
P(M)=\prod_{n=2}^{\infty}\left(1-n^{-2}\right)=\frac{1}{2}
$$

i.e. Prob (samples starting from $\{1\}$ do not hit $\{0\}$) $\geqslant \frac{1}{2}$.

The stochastic Lotka-Volterra model is another example violating (iii). As is clear from figure 1 , every sample starting from $(x, y), x \geqslant 1$ hits the set $(z, 0)(z=1,2,3, \ldots)$ with strictly positive probability, and after reaching it the sample never goes to $(0,0)$.

As for the property (iv), it is not true even when S is a finite set. Such a case is given by: $S=\{1,2,3,4\}, w(1,4)=w(3,2)=1, w(1,2)=w(3,4)=2$ and all the other $w(x, y)=0$. This has infinitely many stationary solutions $P_{\mathrm{st}}(2)=\alpha, P_{\mathrm{st}}(4)=1-\alpha$,

Figure 1. Digraph for the stochastic Lotka-Volterra model. An arrow is drawn from x to y if $w(x, y)>0$.
$P_{\mathrm{st}}(1)=P_{\mathrm{st}}(3)=0, \alpha \in[0,1]$. The property (v) is found to be valid, which is obtained from (iv) by replacing (5) by

$$
\prod_{i=0}^{n} w\left(x_{i}, x_{i+1}\right)>0
$$

Proof of (v) and sufficient conditions for (i)-(iii) are given by developing the Lyapunov method. All we have to do is to find a Lyapunov function of the backward operator of (2). This will be discussed later (Ito 1981).

References

Feller W 1966 An Introduction to Probability Theory and Its Applications (New York: Wiley) X3, XIV7 Haken H 1978 Synergetics-An Introduction 2nd edn (Berlin: Springer) §§ 4.9, 10.2
Ito H 1981 J. Appl. Prob. to be submitted
Reddy V T N 1973 J. Stat. Phys. 13 61-4
Schnackenberg J 1976 Rev. Mod. Phys. 48 571-85

